Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Lancet Reg Health West Pac ; 14: 100247, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-2262865
2.
Front Med (Lausanne) ; 9: 976759, 2022.
Article in English | MEDLINE | ID: covidwho-2142053

ABSTRACT

The development of lung fibrosis is a major concern in patients recovered from severe COVID-19 pneumonia. This study aimed to document the evolution of diffuse alveolar damage (DAD) to the fibrosing pattern and define the transcriptional programs involved. Morphological, immunohistochemical and transcriptional analysis were performed in lung samples obtained from autopsy of 33 severe COVID-19 patients (median illness duration: 36 days). Normal lung and idiopathic pulmonary fibrosis (IPF) were used for comparison. Twenty-seven patients with DAD and disease evolution of more than 2 weeks had fibrosis. Pathways and genes related with collagen biosynthesis and extracellular matrix (ECM) biosynthesis and degradation, myofibroblastic differentiation and epithelial to mesenchymal transition (EMT) were overexpressed in COVID-19. This pattern had similarities with that observed in IPF. By immunohistochemistry, pathological fibroblasts (pFBs), with CTHRC1 and SPARC expression, increased in areas of proliferative DAD and decreased in areas of mature fibrosis. Immunohistochemical analysis demonstrated constitutive expression of cadherin-11 in normal epithelial cells and a similar pattern of cadherin and catenin expression in epithelial cells from both normal and COVID-19 samples. Transcriptomic analysis revealed downregulation of the Hippo pathway, concordant with the observation of YAP overexpression in hyperplastic alveolar epithelial cells. Progression to fibrosis in severe COVID-19 is associated with overexpression of fibrogenic pathways and increased in CTHRC1- and SPARC-positive pFBs. Whereas the Hippo pathway seemed to be implicated in the response to epithelial cell damage, EMT was not a major process implicated in COVID-19 mediated lung fibrosis.

3.
Front Microbiol ; 13: 824967, 2022.
Article in English | MEDLINE | ID: covidwho-1903076

ABSTRACT

The exact role of viral replication in patients with severe COVID-19 has not been extensively studied, and it has only been possible to demonstrate the presence of replicative virus for more than 3 months in a few cases using different techniques. Our objective was to study the presence of RNA SARS-CoV-2 in autopsy samples of patients who died from COVID-19 long after the onset of symptoms. Secondary superimposed pulmonary infections present in these patients were also studied. We present an autopsy series of 27 COVID-19 patients with long disease duration, where pulmonary and extrapulmonary samples were obtained. In addition to histopathological analysis, viral genomic RNA (gRNA) and viral subgenomic RNA (sgRNA) were detected using RT-PCR and in situ hybridization, and viral protein was detected using immunohistochemistry. This series includes 26 adults with a median duration of 39 days from onset of symptoms to death (ranging 9-108 days), 92% of them subjected to immunomodulatory therapy, and an infant patient. We detected gRNA in the lung of all but one patient, including those with longer disease duration. SgRNA was detected in 11 out of 17 patients (64.7%) with illness duration up to 6 weeks and in 3 out of 9 patients (33.3%) with more than 6 weeks of disease progression. Viral protein was detected using immunohistochemistry and viral mRNA was detected using in situ hybridization in 3 out of 4 adult patients with illness duration of <2 weeks, but in none of the 23 adult patients with an illness duration of >2 weeks. A remarkable result was the detection of viral protein, gRNA and sgRNA in the lung cells of the pediatric patient after 95 days of illness. Additional pulmonary infections included: 9 acute bronchopneumonia, 2 aspergillosis, 2 cytomegalovirus, and 1 BK virus infection. These results suggest that in severe COVID-19, SARS-CoV-2 could persist for longer periods than expected, especially in immunocompromised populations, contributing to the persistence of chronic lung lesions. Additional infections contribute to the fatal course of the disease.

4.
Pathology ; 54(6): 738-745, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1882427

ABSTRACT

Severe cases of Coronavirus Disease 2019 (COVID-19) can present with multiple neurological symptoms. The available neuropathological studies have described different lesions; the most frequent was the presence of neuroinflammation and vascular-related lesions. The objective of this study was to report the neuropathological studies performed in a medical institution, with abundant long intensive care unit stays, and their associated clinical manifestations. This is a retrospective monocentric case series study based on the neuropathological reports of 13 autopsies with a wide range of illness duration (13-108 days). A neuroinflammatory score was calculated based on the quantification of CD8- and CD68-positive cells in representative areas of the central nervous system. This score was correlated afterwards with illness duration and parameters related to systemic inflammation. Widespread microglial and cytotoxic T-cell activation was found in all patients. There was no correlation between the neuroinflammatory score and the duration of the illness; nor with parameters of systemic inflammation such as the peak of IL-6 or the HScore (a parameter of systemic macrophage activation syndrome). Two patients had global hypoxic ischaemic damage and five patients had subacute infarcts. One patient had many more brain vascular microthrombi compared to the others and multiple subacute pituitary infarcts. SARS-CoV-2 RNA was not detected with qRT-PCR. The proportion of brain lesions in severe COVID-19 patients could be related to illness duration. In our series, with abundant long hospitalisation stays, neuroinflammation was present in all patients and was more prominent between day 34 and day 45 after onset of symptoms. Clinical correlation showed that two patients with the highest neuroinflammatory scores had severe encephalopathies that were not attributable to any other cause. The second most frequent lesions were related to vascular pathology.


Subject(s)
COVID-19 , Nervous System Diseases , COVID-19/complications , Humans , Infarction , Inflammation , Interleukin-6 , Nervous System Diseases/etiology , Nervous System Diseases/pathology , Retrospective Studies , SARS-CoV-2
6.
Front Cardiovasc Med ; 8: 748396, 2021.
Article in English | MEDLINE | ID: covidwho-1497032

ABSTRACT

The role of SARS-CoV-2 as a direct cause in the cardiac lesions in patients with severe COVID-19 remains to be established. Our objective is to report the pathological findings in cardiac samples of 30 patients who died after a prolonged hospital stay due to Sars-Cov-2 infection. We performed macroscopic, histological and immunohistochemical analysis of the hearts of 30 patients; and detected Sars-Cov-2 RNA by RT-PCR in the cardiac tissue samples. The median age of our cohort was 69.5 years and 76.6% were male. The median time between symptoms onset and death was 36.5 days. The main comorbidities were arterial hypertension (13 patients, 43.3%), dyslipidemia (11 patients, 36.7%), cardiovascular conditions (8 patients, 26.7%), and obesity (8 patients, 26.7%). Cardiovascular conditions included ischemic cardiopathy in 4 patients (13.3%), hypertrophic cardiomyopathy in 2 patients (6.7%) and valve replacement and chronic heart failure in one patient each (3.3%). At autopsy, the most frequent histopathological findings were coronary artery atherosclerosis (8 patients, 26.7%), left ventricular hypertrophy (4 patients, 13.3%), chronic epicardial inflammation (3 patients, 10%) and adipose metaplasia (2 patients, 6.7%). Two patients showed focal myocarditis, one due to invasive aspergillosis. One additional patient showed senile amyloidosis. Sars-Cov-2 RNA was detected in the heart of only one out of 30 patients, who had the shortest disease evolution of the series (9 days). However, no relevant cardiac histological alterations were identified. In present series, cardiac pathology was only modest in most patients with severe COVID-19. At present, the contribution of a direct effect of SARS-CoV-2 on cardiac lesions remains to be established.

7.
Chest ; 161(1): 121-129, 2022 01.
Article in English | MEDLINE | ID: covidwho-1272334

ABSTRACT

BACKGROUND: During the first wave of the COVID-19 pandemic, shortages of ventilators and ICU beds overwhelmed health care systems. Whether early tracheostomy reduces the duration of mechanical ventilation and ICU stay is controversial. RESEARCH QUESTION: Can failure-free day outcomes focused on ICU resources help to decide the optimal timing of tracheostomy in overburdened health care systems during viral epidemics? STUDY DESIGN AND METHODS: This retrospective cohort study included consecutive patients with COVID-19 pneumonia who had undergone tracheostomy in 15 Spanish ICUs during the surge, when ICU occupancy modified clinician criteria to perform tracheostomy in Patients with COVID-19. We compared ventilator-free days at 28 and 60 days and ICU- and hospital bed-free days at 28 and 60 days in propensity score-matched cohorts who underwent tracheostomy at different timings (≤ 7 days, 8-10 days, and 11-14 days after intubation). RESULTS: Of 1,939 patients admitted with COVID-19 pneumonia, 682 (35.2%) underwent tracheostomy, 382 (56%) within 14 days. Earlier tracheostomy was associated with more ventilator-free days at 28 days (≤ 7 days vs > 7 days [116 patients included in the analysis]: median, 9 days [interquartile range (IQR), 0-15 days] vs 3 days [IQR, 0-7 days]; difference between groups, 4.5 days; 95% CI, 2.3-6.7 days; 8-10 days vs > 10 days [222 patients analyzed]: 6 days [IQR, 0-10 days] vs 0 days [IQR, 0-6 days]; difference, 3.1 days; 95% CI, 1.7-4.5 days; 11-14 days vs > 14 days [318 patients analyzed]: 4 days [IQR, 0-9 days] vs 0 days [IQR, 0-2 days]; difference, 3 days; 95% CI, 2.1-3.9 days). Except hospital bed-free days at 28 days, all other end points were better with early tracheostomy. INTERPRETATION: Optimal timing of tracheostomy may improve patient outcomes and may alleviate ICU capacity strain during the COVID-19 pandemic without increasing mortality. Tracheostomy within the first work on a ventilator in particular may improve ICU availability.


Subject(s)
COVID-19/therapy , Intensive Care Units , Pneumonia, Viral/therapy , Respiration, Artificial , Tracheostomy , Aged , Bed Occupancy/statistics & numerical data , COVID-19/epidemiology , Female , Humans , Length of Stay/statistics & numerical data , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Propensity Score , Retrospective Studies , Spain/epidemiology
8.
Thorax ; 76(10): 1044-1046, 2021 10.
Article in English | MEDLINE | ID: covidwho-1148174

ABSTRACT

Diffuse alveolar damage and thrombi are the most common lung histopathological lesions reported in patients with severe COVID-19. Although some studies have suggested increased pulmonary angiogenesis, the presence of vascular proliferation in COVID-19 lungs has not been well characterised. Glomeruloid-like microscopic foci and/or coalescent vascular proliferations measuring up to 2 cm were present in the lung of 14 out of 16 autopsied patients. These lesions expressed CD31, CD34 and vascular endothelial cadherin. Platelet-derived growth factor receptor-ß immunohistochemistry and dual immunostaining for CD34/smooth muscle actin demonstrated the presence of pericytes. These vascular alterations may contribute to the severe and refractory hypoxaemia that is common in patients with severe COVID-19.


Subject(s)
COVID-19 , Autopsy , Cell Proliferation , Humans , Lung , SARS-CoV-2
10.
N Engl J Med ; 383(16): 1522-1534, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-606974

ABSTRACT

BACKGROUND: There is considerable variation in disease behavior among patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19). Genomewide association analysis may allow for the identification of potential genetic factors involved in the development of Covid-19. METHODS: We conducted a genomewide association study involving 1980 patients with Covid-19 and severe disease (defined as respiratory failure) at seven hospitals in the Italian and Spanish epicenters of the SARS-CoV-2 pandemic in Europe. After quality control and the exclusion of population outliers, 835 patients and 1255 control participants from Italy and 775 patients and 950 control participants from Spain were included in the final analysis. In total, we analyzed 8,582,968 single-nucleotide polymorphisms and conducted a meta-analysis of the two case-control panels. RESULTS: We detected cross-replicating associations with rs11385942 at locus 3p21.31 and with rs657152 at locus 9q34.2, which were significant at the genomewide level (P<5×10-8) in the meta-analysis of the two case-control panels (odds ratio, 1.77; 95% confidence interval [CI], 1.48 to 2.11; P = 1.15×10-10; and odds ratio, 1.32; 95% CI, 1.20 to 1.47; P = 4.95×10-8, respectively). At locus 3p21.31, the association signal spanned the genes SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6 and XCR1. The association signal at locus 9q34.2 coincided with the ABO blood group locus; in this cohort, a blood-group-specific analysis showed a higher risk in blood group A than in other blood groups (odds ratio, 1.45; 95% CI, 1.20 to 1.75; P = 1.48×10-4) and a protective effect in blood group O as compared with other blood groups (odds ratio, 0.65; 95% CI, 0.53 to 0.79; P = 1.06×10-5). CONCLUSIONS: We identified a 3p21.31 gene cluster as a genetic susceptibility locus in patients with Covid-19 with respiratory failure and confirmed a potential involvement of the ABO blood-group system. (Funded by Stein Erik Hagen and others.).


Subject(s)
ABO Blood-Group System/genetics , Betacoronavirus , Chromosomes, Human, Pair 3/genetics , Coronavirus Infections/genetics , Genetic Predisposition to Disease , Pneumonia, Viral/genetics , Polymorphism, Single Nucleotide , Respiratory Insufficiency/genetics , Aged , COVID-19 , Case-Control Studies , Chromosomes, Human, Pair 9/genetics , Coronavirus Infections/complications , Female , Genetic Loci , Genome-Wide Association Study , Humans , Italy , Male , Middle Aged , Multigene Family , Pandemics , Pneumonia, Viral/complications , Respiratory Insufficiency/etiology , SARS-CoV-2 , Spain
SELECTION OF CITATIONS
SEARCH DETAIL